The conjugacy problem in the Grigorchuk group is polynomial time decidable
نویسندگان
چکیده
منابع مشابه
The conjugacy problem in the Grigorchuk group is polynomial time decidable
In this paper we prove that the conjugacy problem in the Grigorchuk group has polynomial time complexity. This solves a problem posed by Grigorchuk rather unexpectedly. Mathematics Subject Classification (2010). 20F10, 20E08.
متن کاملThe Grigorchuk Group
In this survey we will define the Grigorchuk group and prove some of its properties. We will show that the Grigorchuk group is finitely generated but infinite. We will also show that the Grigorchuk group is a 2-group, meaning that every element has finite order a power of two. This, along with Burnside’s Theorem, gives that the Grigorchuk group is not linear.
متن کاملthe algorithm for solving the inverse numerical range problem
برد عددی ماتریس مربعی a را با w(a) نشان داده و به این صورت تعریف می کنیم w(a)={x8ax:x ?s1} ، که در آن s1 گوی واحد است. در سال 2009، راسل کاردن مساله برد عددی معکوس را به این صورت مطرح کرده است : برای نقطه z?w(a)، بردار x?s1 را به گونه ای می یابیم که z=x*ax، در این پایان نامه ، الگوریتمی برای حل مساله برد عددی معکوس ارانه می دهیم.
15 صفحه اولThe Asymptotic Dimension of the First Grigorchuk Group Is Infinity
We describe a sufficient condition for a finitely generated group to have infinite asymptotic dimension. As an application, we conclude that the first Grigorchuk group has infinite asymptotic dimension.
متن کاملRegularity is Decidable for Normed PA Processes in Polynomial Time
A process ∆ is regular if it is bisimilar to a process ∆′ with finitely many states. We prove that regularity of normed PA processes is decidable and we present a practically usable polynomial-time algorithm. Moreover, if the tested normed PA process ∆ is regular then the process ∆′ can be effectively constructed. It implies decidability of bisimulation equivalence for any pair of processes suc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Groups, Geometry, and Dynamics
سال: 2010
ISSN: 1661-7207
DOI: 10.4171/ggd/108